Molecular mechanism of parallel fiber-Purkinje cell synapse formation
نویسندگان
چکیده
The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.
منابع مشابه
Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse
The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional...
متن کاملImpairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice
Of the six glutamate receptor (GluR) channel subunit families identified by molecular cloning, five have been shown to constitute either the AMPA, kainate, or NMDA receptor channel, whereas the function of the delta subunit family remains unknown. The selective localization of the delta 2 subunit of the GluR delta subfamily in cerebellar Purkinje cells prompted us to examine its possible physio...
متن کاملP/Q-Type Ca Channel 1A Regulates Synaptic Competition on Developing Cerebellar Purkinje Cells
Synapse formation depends critically on the competition among inputs of multiple sources to individual neurons. Cerebellar Purkinje cells have highly organized synaptic wiring from two distinct sources of excitatory afferents. Single climbing fibers innervate proximal dendrites of Purkinje cells, whereas numerous parallel fibers converge on their distal dendrites. Here, we demonstrate that the ...
متن کاملIncreased density and stabilization of climbing fiber-Purkinje cell synapses in mice overexpressing corticotropin-releasing factor
Corticotropin-releasing factor (CRF) plays a crucial role in generating the stress response. During early development CRF also acts as a neuromodulator and triggers neurite outgrowth. Here, we evaluate the effects of CRF on afferent systems of cerebellar Purkinje cells using mice overexpressing CRF, particularly in brain. We hypothesize that CRF not only stimulates dendritic development, but ad...
متن کاملNR2A subunit of the N-methyl d-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning
Traditionally studies aimed at elucidating the molecular mechanisms underlying cerebellar motor learning have been focused on plasticity at the parallel fiber to Purkinje cell synapse. In recent years, however, the concept is emerging that formation and storage of memories are both distributed over multiple types of synapses at different sites. Here, we examined the potential role of potentiati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012